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INTRODUCTION

In recent years the interest in plastic deformation has increased

considerably in research as well as in practical applications. The importance

of realistic constitutive equations has been emphasized in several research

workshops (refs 1-3), and many computer codes have been developed as seen in a

recent survey paper (ref 4). According to time-independent plasticity theory,

the response of a strain-hardening material is specified by an initial yield

condition, a hardening rule, and a flow rule. While there is general agree-

ment in the literature over which initial yield condition and flow rule should

be used, there is no such accord with regard to the hardening rule. Most

hardening rules in present use are well documented and reviewed in the

literature (ref 5). The stress-strain curves in Figures I and 2 illustrate

the fact that all of the theories are capable of treating the monotonic

loading situation. For reversed loading, it has been concluded that kinematic

and isotropic hardening models represent the limits of the actual behavior,

whereas the remaining theories are capable of falling anywhere within these

limits (refs 5,6). This is certainly true for many strata-hardening materials

as shown in Figure 1, but not true for some small strain-hardening materials

as shown in Figure 2. The experimental works by Milligan, Koo, and Davidson

(ref 7) and Swift (ref 8) demonstrate that the stress-strain curves for a high

strength steel and six spring steels behave like that shown in Figure 2. None

of the existing theories can represent this material behavior reasonably well

for two reasons. First, the initiation of reverse yielding occurs mucti

References are listed at the end of this report.
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earlier than predicted by the theories. Second, the assumption of same slope

for forward and reversed loading is not valid.

In this report a theoretical model is proposed with an attempt to give a

better representation of the actual material behavior especially that shown in

Figure 2 (refs 7,8). The Bauschinger effect factor is treated as a function

of overstrain. The strain-hardening effect is taken into account with

different parameters used for forward and reversed loading processes. The

application of this model to the torsion problem in a cylindrical bar is

reported.

THEORETICAL W3DEL

The stress-strain curve during loading for a small strain-hardening

material can be replaced with sufficient accuracy by a bilinear elastic-

plastic model as shown in Figure 3. For the plastic portion, the yield shear

stress T is related to the plastic shear strain yP by

I/To - 1 + WU/(l-m) and 4 - (G/To)yP (I)

where io is the initial yield shear stress, G is the shear modulus, and mG is

the slope of shear stress-strain curve in the plastic portion.

In most of the plasticity theories, the curve of reverse loading is

uniqaely defined by the curve of the first loading. The present model does

not assume such a relationship. The experimental stress-strain curve during

reversed loading will be used directly. A piecewise linear representation can

be used, but only a bilinear approximation is chosen here as shown in Figure

3. Choosing a new coordinate system (V, Y') with origin at the point before
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unloading, we have for the plastic portion of the reverse yielding curve

T'/T o - o'/o + m'¢'/(l-m') and C' (G/ro)Y'P (2)

where To' is the linear drop in shear stress until reverse yielding begins,

M'G is the slope of the reverse yielding curve, and y'P is the additional

plastic shear strain during reversed loading. Taking into account strain-

hardening, the definition of the Bauschinger effect factor (BEF) is

BEF - ( T-i)/ 1 - f(rl) (3)

where T1 Is the shear stress just before unloading occurs. The Bauschinger

effect factor is a function of prestrain as shown in Figure 4. This

information is available from the experimental data for a high strength steel

(ref 7).

According to equations (1) and (3), T0 ' can be expressed as a function of

plastic strain (CI) Just prior to unloading by

TO 1 [1 + MC/(l-m)][l + f(0] - g(i) (4)

The present model is quite general because different parameters (m,m') and

functions f(C) can be used. It seems interesting to discuss two special cases

of the present material model:

(a) m - a', f - 1: reduces to isotropic hardening model.

(b) m - m', g - 2: reduces to kinematical hardening model.

TORSION BARS

For a circular bar under torsional loading, the external torque M can be

computed by

1

M4 -1/Ho -4 f (r/,r0 ) 2d& (5)

0
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where Ma vs/2 a3r0 , r/a, v to the current shear-stress corresponding to

location r, and a to the radius of the croes-section. Geometric

coneiderations show that radial lines have to remain straight after

deformation. Thus, one concludes that

Y-Y&- Cr (6)

where Y. is the strain at the outermost fiber and a Is the angle of twist per

unit length. Since a yield stress is introduced, an elastic core always

exists during deformation whose radius c is given by

c/a - Yo/Ya and Yo - ro/G (7)

If a material is linear strain hardening, a closed-form loading solution '

the elastic-plastic range can be obtained (ref 9). The plastic shear stralu,

and shear stress are given by

- (l-m)W(y/y-l) (8)

T/To - (1-) + Ma/Yo  (9)

Using equations (5) through (9), we can compute the torque. The result is

S- + -- (4 -c 3 /a 3 ) (10)
c 3

Note that M - I for c - a (initial yielding), and H - (1/3)(4-c3 /a3) for

perfectly plastic material.

R EVRSEO LOADING

If we remove the external torque after the bar is twisted beyond the

elastic limit, there is a residual angle of twist (a), The ratio of the

residual angle to the original angle of twist (a) is defined as the spring-

back ratio (ft*/a). Assuming complete elastic unloading (ref 9), we can

4



determine al, and the spring-back ratio (i-')/a is given by

4 Yo I Yo....)l -- + - (--)4J (11)
3 a 3 Ys

This formula for spring-back ratio can be used if reverse yielding will not

occur. It can be shown that this Is true when the following inequality is

satisfied:

mas 1- c3

-- (4 - (12)
c 3 aa &()

where ;, is the dimensionless plastic shear strain at the outermost fiber just

prior to unloading. The upper limit for a or y and the corresponding H can be

found from the above inequality.

As an example, when m - 0.1, c/a - 0.1, g - 2 (kinematic hardening),

inequality (12) is not satisfied, i.e., reverse yielding occurs during the

removal of the external torque M - 2.1996 Mo.

The occurrence of reverse yielding depends on the initial loading,

reversed loading, and the material moda. Even if reverse yielding may not

occur during the removal of external torque, it may still occur during the

reversed loading. Let a' be the unit angle of twist in the reversed direction

during reversed loading. Geometric considerations again lead to

Y' - Ya'" a 'r (13)

where ya' is the shear strain at the outermost fiber during reversed

loading. Let d be the elastic-plastic boundary. In the elastic zone

(r C d), we have y"P - 0 and t' - Gy'. In the plastic zone (r 4 d), the

shear stress and plastic shear strain during reverse loading can be

computed by

O/To  (-m')() + m'y'/y o  (14)
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and

V (1-m')[Y'/Yo - g(0] (la)

At the elastic-plastic boundary d, d' - 0 and d = (l-m)(yd/yo-l) which lead

to

Yd'/Yo - g(4d) (16)

d = (1-m)[(d/a)(Ya/Yo) - 11 (17)

Using equations (13), (16), and (17), we obtain

d g(;d) 1 + d/(l-m)

a Ya'/Yo Ya/yo

Therefore, we can compute Yd and d for given values of Ya and a'. The ratio

Ya'/ha is related to ;d,

Ya'/Ya = a'/cx = g(Wd)/[l + ld/(l-m)] (19)

Now we can calculate the external torque M' during reversed loading by

I

-'= M'/M o = (Ya'/Yo)[m' + (l-m')(d/a) ] + (1-rn') f g( )CdC (20)

if
f(t) f0 + f4

+ " + fn-I 0_-

then (21)

g() = go + 914 + .-. +

Since 4 is linear in 9, we can carry out the integration in equation (20)

explicitly in terms of d/a, m, and Ya/o . In general, 4' is a function of Ya

and Ya' with parameters a, G, Top n, m, ' fo, f1,-..£n-l- The dependence of 1,'

on d/a has been eliminated through equations (18) and (19).

6
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NUMERICAL RESULTS AND DISCUSSIONS

Consider a circular bar which was twisted to reach Ya 10YO where Yo

To/G. The elastic-plastic boundary was calculated by equation (7) to be c/a

0.1. The applied external torque can be calculated by equation (10); and the

results are M/Mo - 1.333, 1.41967, 2.1996 for m = 0.0, 0.01, 0.1,

respectively, and Ho - u/2 a 3To.

During the removal of the external torque, the occurrence of reverse

yielding still depends on the material model. If the kinematic hardening

model is used with m = m' - 0.1, then reverse yielding will occur because

inequality (12) is violated. By equating H' to 4 as given by equations (10)

and (20), and solving for the elastic-plastic boundary, we have d/a = 0.8910.

The residual shear strain is Ya' = 2.2446Yo and the spring-back ratio during

elastic-plastic unloading is 0.77554. According to equation (11) on the

assumption of elastic unloading, the spring-back ratio would be 0.78003. If

m= m' - 0.01 is used with either kinematic (g = 2) or iostropic (f - 1)

hardening models, reverse yielding will not occur during unloading. However,

reverse yielding may still occur if the Bauschinger effect factor is small,

e.g., f - 0.3.

When the external torque is removed and then applied in the reversed

direction, reverse yielding will occur no matter what material models are

used. Different material models predict quite different results. Let us

consider only th -ase of Y. - Ya' - l0yo with m - 0.01. The external

torque to reach the initiation of reverse yielding will be -0.76033, -0.58033,

-0.24633 Mo according to isotropic hardening, kinematic hardening, the present

model with f = 0.4, respectively. Further reversed loading depends also on
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the slope of strain-hardening. According to either the isotropic or the

kinematic hardening model, the slope during reverse loading is the same as

during loading, i.e., m' - m m 0.01. The present model does not make such an

assumption. Different slopes such as m' - 0.1, 0.3 can be used, and f(C) can

be a general function of prestrain. To reach Y.' - Ya - 10Yo (twist the bar

forward and backward in the same amount), we need to apply the external torque

in the reversed direction. The predicted results are -1.31504, -1.48844 Mo

according to the kinematic hardening (g - 2) and isotropic hardening (f - 1)

models, respectively. If the Bauschinger effect factor f - 0.4 is used with

is' - 0.01, 0.1, 0.3, then the external torque will be -0.64716, -1.3686,

-2.97104 Ho, respectively. Therefore, a high strength steel, with m - 0.01, f

- 0.4, and m' - 0.3 requires a much larger torque in the reversed direction

(-2.97104 Mo) than that predicted by the other models, even though the

initiation of reverse yielding occurs at a much smaller torque (-0.24633 Ho)

than the other predictions.

Since different material models predict quite different results, reverse

loading experiments are needed for the characterization of the material

behavior and for the comparison with the theoretical predictions.

SUMMARY AND RECOMMENDATIONS

1. The proposed model for reverse yielding can give a better

representation of the actual stress-strain curve. All popular plasticity

models fail for reverse yielding in a high strength steel or spring steel.

2. The present model has been applied to the torsion problem in a

cylindrical bar. For a high strength steel bar, the results indicate that the



initiation of reverse yielding occurs at a much smaller torque in the reversed

direction than that predicted by the other models. Further reversed loading

requires a much larger rate of increase in the applied torque than the other

modelIs.

3. More research works to develop a better plasticity theory are needed

f or reversed loading and cyclic loading problems. Basic experiments are

needed to characterize the material behavior and to compare with the

theoretical predictions.
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Figure 1. Stress-strain curve for a large strain-hardening material.
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Figure 2. Stress-strain curve for a small strain-hardening material.
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Figure 3. A model for reverse yielding.
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Figure 4. 11 ' ischinger effect factor.
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